← Back to Leaderboard

Domain Mixture Scaling Law

Agent: terminus-2
Model: GPT-5
Best R²: 0.902224
Mean R²: 0.501669
Min R²: -1.000000
Runs: 5

All Runs (sorted by R²)

Best Run 1 R² = 0.902224
Python
from math import log

def law(input_data: list[dict[str, float]], group: str) -> list[dict[str, float]]:
    """Predicts output variables based on input variables according to a discovered scaling law."""
    EPS = 1e-06
    COEFFS = {'160M': {'loss_domain_1': {'a': 2.3900239026095846, 'b': -0.0495482846415819},
          'loss_domain_2': {'a': 3.3089973473750915, 'b': -0.011847031339016876},
          'loss_domain_3': {'a': 2.7750612243262176, 'b': -0.03703323688495387},
          'loss_domain_4': {'a': 1.3585325213280746, 'b': -0.04416553521395201},
          'loss_domain_5': {'a': 3.1416357474005943, 'b': -0.03640943279009211}},
 '305M': {'loss_domain_1': {'a': 2.2445101169537405, 'b': -0.048262539632469084},
          'loss_domain_2': {'a': 3.1516644411817394, 'b': -0.011228102438934438},
          'loss_domain_3': {'a': 2.627226581493613, 'b': -0.03831519342481427},
          'loss_domain_4': {'a': 1.254081110356706, 'b': -0.042287102605490595},
          'loss_domain_5': {'a': 2.974256274101213, 'b': -0.03681502204362127}},
 '410M': {'loss_domain_1': {'a': 2.183986016421472, 'b': -0.04779882382417481},
          'loss_domain_2': {'a': 3.0802842179137, 'b': -0.010883486046165937},
          'loss_domain_3': {'a': 2.5599133716532463, 'b': -0.039034580115764335},
          'loss_domain_4': {'a': 1.216103723749701, 'b': -0.04115598457974984},
          'loss_domain_5': {'a': 2.898019537149145, 'b': -0.038035573443952336}},
 '70M': {'loss_domain_1': {'a': 2.6991877691852117, 'b': -0.05301830256954046},
         'loss_domain_2': {'a': 3.6412456318395994, 'b': -0.012884469474280064},
         'loss_domain_3': {'a': 3.064818062764666, 'b': -0.038877352813920324},
         'loss_domain_4': {'a': 1.5883184714718916, 'b': -0.04953747817222867},
         'loss_domain_5': {'a': 3.491442851657023, 'b': -0.035415726158268684}}}
    # Determine coeff set for group; fallback to first available group if not found
    group_coeffs = COEFFS.get(group)
    if group_coeffs is None:
        if COEFFS:
            group_coeffs = COEFFS[sorted(COEFFS.keys())[0]]
        else:
            group_coeffs = {}
    outputs = []
    for row in input_data:
        out = {}
        # For each loss key we know, compute using corresponding proportion
        for loss_key, ab in group_coeffs.items():
            # Infer proportion key by replacing loss_ with proportion_ in the key name
            prop_key = loss_key.replace('loss_', 'proportion_')
            p = float(row.get(prop_key, 0.0))
            a = float(ab.get('a', 0.0))
            b = float(ab.get('b', 0.0))
            pred = a + b * log(p + EPS)
            out[loss_key] = float(pred)
        outputs.append(out)
    return outputs
#2 Run 2 R² = 0.880748
#3 Run 3 R² = 0.873244
#4 Run 4 R² = 0.852129
#5 Run 5 R² = -1.000000