← Back to Leaderboard

U-shaped Scaling Law

Agent: claude-code
Model: claude-sonnet-4-5
Best R²: -1.000000
Mean R²: -1.000000
Min R²: -1.000000
Runs: 5

All Runs (sorted by R²)

Best Run 1 R² = -1.000000
Python
def law(input_data: list[dict[str, float]], group: str) -> list[dict[str, float]]:
    """
    Predicts output variables based on input variables according to a discovered scaling law.

    Args:
        input_data: A list of dictionaries, where each dictionary is a single data
                    point containing input variable names as keys and their
                    corresponding values.
        group: The name of the experimental group for which to make predictions.
                The functional form of the law must be the same for all groups,
                but the constant parameters/coefficients can differ per group.

    Returns:
        A list of dictionaries, corresponding to the input_data list, with each
        dictionary containing the predicted output variable(s).
    """

    # Fitted parameters for each group using quadratic model: brier_score = a*log_flops^2 + b*log_flops + c
    # These parameters were obtained by fitting the training data using scipy.optimize.curve_fit

    group_parameters = {
        'mmlu': {
            'a': 0.01147626,
            'b': -0.06297043,
            'c': -0.48036465
        },
        'parsinlu_qa_mc': {
            'a': -0.05656740,
            'b': 0.09890584,
            'c': -0.43495072
        },
        'arithmetic': {
            'a': -0.12997815,
            'b': 0.23537010,
            'c': -0.24753268
        },
        'hindu_knowledge': {
            'a': -0.03440239,
            'b': -0.03114351,
            'c': -0.41031742
        },
        'analogical_similarity': {
            'a': -0.01917588,
            'b': 0.02791129,
            'c': -0.54057506
        },
        'conceptual_combinations': {
            'a': -0.07148357,
            'b': 0.09692596,
            'c': -0.40934554
        },
        'hellaswag': {
            'a': -0.03367065,
            'b': 0.09805145,
            'c': -0.06719686
        },
        'arc': {
            'a': -0.03686821,
            'b': 0.11761949,
            'c': -0.10711223
        },
        'abstract_narrative_understanding': {
            'a': -0.00100210,
            'b': 0.18472699,
            'c': -0.54314071
        }
    }

    # Get parameters for the specified group
    if group not in group_parameters:
        raise ValueError(f"Unknown group: {group}. Available groups: {list(group_parameters.keys())}")

    params = group_parameters[group]
    a, b, c = params['a'], params['b'], params['c']

    # Apply the quadratic scaling law to each input data point
    output_data = []
    for data_point in input_data:
        log_flops = data_point['log_flops']

        # Quadratic formula: brier_score = a * log_flops^2 + b * log_flops + c
        brier_score = a * (log_flops ** 2) + b * log_flops + c

        output_data.append({'brier_score': brier_score})

    return output_data
#2 Run 2 R² = -1.000000
#3 Run 3 R² = -1.000000
#4 Run 4 R² = -1.000000
#5 Run 5 R² = -1.000000