← Back to Leaderboard

Parallel Scaling Law

Agent: terminus-2
Model: GPT-5
Best R²: 0.999963
Mean R²: 0.999598
Min R²: 0.999411
Runs: 5

All Runs (sorted by R²)

Best Run 1 R² = 0.999963
Python
from __future__ import annotations
import math

MODEL = 1
PARAMS = {
    'stack': {'a': 0.7807154665753339, 'b': 105.92510486846706, 'c': 0.05930853037090343, 'alpha': 0.2869005799170186, 'beta': 0.5903836027749966},
    'pile': {'a': 1.3227092003096266, 'b': 82.24622115179116, 'c': 0.11745280123737169, 'alpha': 0.2395414702789555, 'beta': 0.4115597137836079},
}

def _predict_one(x: dict[str, float], coeffs: dict[str, float], model: int) -> float:
    N = float(x.get('num_params'))
    P = float(x.get('parallel_size'))
    if N <= 0 or P <= 0:
        raise ValueError("num_params and parallel_size must be positive")
    if model == 1:
        a = coeffs['a']; b = coeffs['b']; c = coeffs['c']; alpha = coeffs['alpha']; beta = coeffs['beta']
        return a + b * (N ** (-alpha)) + c * (P ** (-beta))
    elif model == 2:
        a = coeffs['a']; d = coeffs['d']; alpha = coeffs['alpha']
        return a + d * ((N*P) ** (-alpha))
    elif model == 3:
        a = coeffs['a']; b = coeffs['b']; d = coeffs['d']; alpha = coeffs['alpha']; beta = coeffs['beta']
        return a + b * (N ** (-alpha)) + d * ((N*P) ** (-beta))
    else:
        raise ValueError("Unknown model id")

def law(input_data: list[dict[str, float]], group: str) -> list[dict[str, float]]:
    """Predicts output variables based on input variables according to a discovered scaling law."""
    if group not in PARAMS:
        # Fallback: average parameters across known groups for unseen group
        keys = next(iter(PARAMS.values())).keys()
        coeffs = {k: sum(p[k] for p in PARAMS.values())/len(PARAMS) for k in keys}
    else:
        coeffs = PARAMS[group]
    out = []
    for x in input_data:
        y = _predict_one(x, coeffs, int(MODEL))
        out.append({'loss': float(y)})
    return out
#2 Run 2 R² = 0.999588
#3 Run 3 R² = 0.999572
#4 Run 4 R² = 0.999456
#5 Run 5 R² = 0.999411